566 research outputs found

    Crystallizing membrane proteins using lipidic mesophases

    Get PDF
    peer-reviewedThis paper was obtained through PEER (Publishing and the Ecology of European Research) http://www.peerproject.euA detailed protocol for crystallizing membrane proteins that makes use of lipidic mesophases is described. This has variously been referred to as the lipid cubic phase or in meso method. The method has been shown to be quite general in that it has been used to solve X-ray crystallographic structures of prokaryotic and eukaryotic proteins, proteins that are monomeric, homo- and hetero-multimeric, chromophore-containing and chromophore-free, and α-helical and β-barrel proteins. Its most recent successes are the human engineered β2-adrenergic and adenosine A2A G protein-coupled receptors. Protocols are provided for preparing and characterizing the lipidic mesophase, for reconstituting the protein into the monoolein-based mesophase, for functional assay of the protein in the mesophase, and for setting up crystallizations in manual mode. Methods for harvesting micro-crystals are also described. The time required to prepare the protein-loaded mesophase and to set up a crystallization plate manually is about one hour

    Monoolein Lipid Phases as Incorporation and Enrichment Materials for Membrane Protein Crystallization

    Get PDF
    The crystallization of membrane proteins in amphiphile-rich materials such as lipidic cubic phases is an established methodology in many structural biology laboratories. The standard procedure employed with this methodology requires the generation of a highly viscous lipidic material by mixing lipid, for instance monoolein, with a solution of the detergent solubilized membrane protein. This preparation is often carried out with specialized mixing tools that allow handling of the highly viscous materials while minimizing dead volume to save precious membrane protein sample. The processes that occur during the initial mixing of the lipid with the membrane protein are not well understood. Here we show that the formation of the lipidic phases and the incorporation of the membrane protein into such materials can be separated experimentally. Specifically, we have investigated the effect of different initial monoolein-based lipid phase states on the crystallization behavior of the colored photosynthetic reaction center from Rhodobacter sphaeroides. We find that the detergent solubilized photosynthetic reaction center spontaneously inserts into and concentrates in the lipid matrix without any mixing, and that the initial lipid material phase state is irrelevant for productive crystallization. A substantial in-situ enrichment of the membrane protein to concentration levels that are otherwise unobtainable occurs in a thin layer on the surface of the lipidic material. These results have important practical applications and hence we suggest a simplified protocol for membrane protein crystallization within amphiphile rich materials, eliminating any specialized mixing tools to prepare crystallization experiments within lipidic cubic phases. Furthermore, by virtue of sampling a membrane protein concentration gradient within a single crystallization experiment, this crystallization technique is more robust and increases the efficiency of identifying productive crystallization parameters. Finally, we provide a model that explains the incorporation of the membrane protein from solution into the lipid phase via a portal lamellar phase

    The Membrane Protein Data Bank

    Get PDF
    The Membrane Protein Data Bank (MPDB) is an online, searchable, relational database of structural and functional information on integral, anchored and peripheral membrane proteins and peptides. Data originates from the Protein Data Bank and other databases, and from the literature. Structures are based on X-ray and electron diffraction, nuclear magnetic resonance and cryoelectron microscopy. The MPDB is searchable online by protein characteristic, structure determination method, crystallization technique, detergent, temperature, pH, author, etc. Record entries are hyperlinked to the PDB and Pfam for viewing sequence, three-dimensional structure and domain architecture, and for downloading coordinates. Links to PubMed are also provided. The MPDB is updated weekly in parallel with the Protein Data Bank. Statistical analysis of MPDB records can be performed and viewed online. A summary of the statistics as applied to entries in the MPDB is presented. The data suggest conditions appropriate for crystallization trials with novel membrane proteins

    Human capital for digital economy modernization

    Get PDF
    The article outlines the scientific approaches to the formation of digital technologies of the ecosystem of professional education and management of the formation of human capital for the real sector of the Russian economy. It has been proposed to highlight specific competences as training units (quantums), digitize them, create a level classifier and build an ordering system, a system of choice used for order fulfillment, a continuous (from general education to professional education for a given position) professional education system based on individual educational trajectories with well-defined (digitized) parameters and focused investments in human capital. Using the formed systems, it has been proposed to provide digital modernization of the main didactic processes with guaranteed achievement of specific diagnosed learning outcomes in accordance with the order.For new competencies it is possible to develop ontological models of employee professional activities. Herewith it is planned to solve several important tasks, including the development and adoption of a general concept of continuous professional education, the selection and classification of didactic units for specific professions, the development and introduction of a classification system for educational organizations according to their levels of competence, the development and introduction of a system for qualifying teachers, formation of a system of educational trajectories (necessary competencies) for business, development of pedagogical technologies standards that guarantee the achievement of results (the right people - in the right place - at the right time). It has been offered to select several branches of the real sector of the economy for the implementation of pilot projects with the subsequent dissemination of experience throughout the Russian economy

    Lipidic cubic phase serial millisecond crystallography using synchrotron radiation.

    Get PDF
    Lipidic cubic phases (LCPs) have emerged as successful matrixes for the crystallization of membrane proteins.Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs). Here, the adaptation of this technology to perform serial millisecond crystallography (SMX) at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven protonpump bacteriorhodopsin (bR) at a resolution of 2.4 A ° . The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway

    Regulation of G protein-coupled receptors by palmitoylation and cholesterol

    Get PDF
    Due to their membrane location, G protein-coupled receptors (GPCRs) are subject to regulation by soluble and integral membrane proteins as well as membrane components, including lipids and sterols. GPCRs also undergo a variety of post-translational modifications, including palmitoylation. A recent article by Zheng et al. in BMC Cell Biology demonstrates cooperative roles for receptor palmitoylation and cholesterol binding in GPCR dimerization and G protein coupling, underlining the complex regulation of these receptors

    Combination of hypomorphic mutations of the Drosophila homologues of aryl hydrocarbon receptor and nucleosome assembly protein family genes disrupts morphogenesis, memory and detoxification

    Get PDF
    Aryl hydrocarbon receptor is essential for biological responses to endogenous and exogenous toxins in mammals. Its Drosophila homolog spineless plays an important role in fly morphogenesis. We have previously shown that during morphogenesis spineless genetically interacts with CG5017 gene, which encodes a nucleosome assembly factor and may affect cognitive function of the fly. We now demonstrate synergistic interactions of spineless and CG5017 in pathways controlling oxidative stress response and long-term memory formation in Drosophila melanogaster. Oxidative stress was induced by low doses of X-ray irradiation of flies carrying hypomorphic mutation of spineless, mutation of CG5017, and their combination. To determine the sensitivity of these mutants to pharmacological modifiers of the irradiation effect, we irradiated flies growing on standard medium supplemented by radiosensitizer furazidin and radioprotector serotonin. The effects of irradiation were investigated by analyzing leg and antenna morphological structures and by using real-time PCR to measure mRNA expression levels for spineless, Cyp6g1 and Gst-theta genes. We also examined long-term memory in these mutants using conditioned courtship suppression paradigm. Our results show that the interaction of spineless and CG5017 is important for regulation of morphogenesis, long-term memory formation, and detoxification during oxidative stress. Since spineless and CG5017 are evolutionary conserved, these results must be considered when evaluating the risk of combining similar mutations in other organisms, including humans

    Controlled In Meso Phase Crystallization – A Method for the Structural Investigation of Membrane Proteins

    Get PDF
    We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i) the stabilization of membrane proteins in the meso phase, (ii) the control of hydration level and additive concentration by vapor diffusion. The new technology (iii) significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv) direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR) crystals of high quality and diffraction up to 1.3 Ã… resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII) from Halobacterium salinarum for the first time

    Study of two G-protein coupled receptor variants of human trace amine-associated receptor 5

    Get PDF
    Here we report the study of two bioengineered variants of human trace amine-associated receptor 5 (hTAAR5) that were expressed in stable tetracycline-inducible HEK293S cell lines. A systematic detergent screen showed that fos-choline-14 was the optimal detergent to solubilize and subsequently purify the receptors. Milligram quantities of both hTAAR5 variants were purified to near homogeneity using immunoaffinity chromatography followed by gel filtration. Circular dichroism showed that the purified receptors had helical secondary structures, indicating that they were properly folded. The purified receptors are not only suitable for functional analyses, but also for subsequent crystallization trials. To our knowledge, this is the first mammalian TAAR that has been heterologously expressed and purified. Our study will likely stimulate in the development of therapeutic drug targets for TAAR-associated diseases, as well as fabrication of TAAR-based sensing devices

    Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes

    Get PDF
    Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β2-adrenergic receptor (β2AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β2AR. We show that the select ligands bind preferentially to different predicted conformers of β2AR, and identify a role of β2AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as "computational probes" to systematically identify protein conformers with likely biological significance. © 2012 Isin et al
    • …
    corecore